Finiteness of Calabi-Yau Quasismooth Weighted Complete Intersections

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Residue Mirror Conjecture for Calabi-yau Complete Intersections

The toric residue mirror conjecture of Batyrev and Materov [2] for Calabi-Yau hypersurfaces in Gorenstein toric Fano varieties expresses a toric residue as a power series whose coefficients are certain integrals over moduli spaces. This conjecture was proved independently by Szenes and Vergne [10] and Borisov [5]. We build on the work of these authors to generalize the residue mirror map to not...

متن کامل

Calabi-Yau Metrics for Quotients and Complete Intersections

We extend previous computations of Calabi-Yau metrics on projective hypersurfaces to free quotients, complete intersections, and free quotients of complete intersections. In particular, we construct these metrics on generic quintics, four-generation quotients of the quintic, Schoen CalabiYau complete intersections and the quotient of a Schoen manifold with Z3 × Z3 fundamental group that was pre...

متن کامل

Some finiteness results for Calabi–Yau threefolds

We investigate the moduli theory of Calabi–Yau threefolds, and using Griffiths’ work on the period map, we derive some finiteness results. In particular, we confirm a prediction of Morrison’s Cone Conjecture.

متن کامل

Localization computation of one-point disk invariants of projective Calabi-Yau complete intersections

We define one-point disk invariants of a smooth projective Calabi-Yau (CY) complete intersection (CI) in the presence of an anti-holomorphic involution via localization. We show that these invariants are rational numbers and obtain a formula for them which confirms, in particular, a conjecture by Jinzenji-Shimizu [JS, Conjecture 1]. 1 The one-point disk mirror theorem The problem of defining an...

متن کامل

The Genus One Gromov-Witten Invariants of Calabi-Yau Complete Intersections

We obtain mirror formulas for the genus 1 Gromov-Witten invariants of projective Calabi-Yau complete intersections. We follow the approach previously used for projective hypersurfaces by extending the scope of its algebraic results; there is little change in the geometric aspects. As an application, we check the genus 1 BPS integrality predictions in low degrees for all projective complete inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2014

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnu049